ONTARIO POWER GENERATION

Rob Templeton, Senior Manager Assurance Field Execution Surveillance & Reporting, Quality Management, Darlington Refurbishment

June 13, 2018

Ontario Electricity Generation

Darlington Refurbishment

- Mid-life refurbishment required for CANDU
 - For Darlington, that time is now
- Strong economic case:
 - World class high performing asset
 - Help moderate electricity prices
 - 12.8B investment
 - GHG-free base-load energy
 - Economic benefits and long-term
 employment opportunities

Project Development

Initiation Phase

2007-2009

SCOPE OF WORK

1

- Initial determination of refurbishment scope through completion of:
 - Technical assessments of all major components
 - Condition assessments of balance of plant components
 - Initiation of regulatory processes; Integrated Safety Review and Environmental Assessment
- Develop reference plans for cost and schedule
- Complete economic feasibility assessment
- Establish project management approach and governance
- Establish overall contracting strategy
- OPG Board and Shareholder agree with recommendation to proceed with preliminary planning within the Definition Phase of the project

Definition Phase 2010-2015

SCOPE OF WORK

2

- Obtain regulatory approvals:
 - Environmental Assessment
 - Integrated Safety Review
 - Integrated Implementation Plan
- Implement project management and oversight
- Complete infrastructure upgrades, i.e. Darlington Energy Complex
- Implement safety improvements
- Award major contracts
- Finalize project scope and complete engineering work
- Procure long lead materials
- Complete unit prerequisite work
- Construct reactor mock-up and fabricate and test tooling
- Develop release quality cost and schedule estimate
- Obtain all permits and licences
- Mobilize and train Trades staff

Execution Phase 2016-2026

SCOPE OF WORK

3

- Unit shutdown and defueling
- Island unit and lay up systems
- Execute all refurbishment scope:
 - Reactor components
 - Fuel handling systems
 - Turbine / generator
 - Steam generators
 - Balance of plant
- Meet all regulatory commitments
- Plant maintenance and inspection activities
- Manage plant configuration
- Load fuel
- Commissioning
- Unit start-up
- Apply lessons learned to subsequent unit refurbishments
- Project close-out

Refurbishment Schedule

Risks are Managed

- · Years of extensive planning
- Lessons learned have been incorporated
- Scope, schedule and cost are developed to a level of detail not seen on prior projects.
- Contingencies are included in the budget and schedule
- Site infrastructure in place
- Significant Oversight/Public Reporting:
 - Funding strategy provides for realistic off-ramps at key decision points.
 - Extensive public oversight and reporting.

Innovation at Darlington

Steps to Refurbishment

Refurbishment Key Vendor Partners

Defuel, Fuel Handling, Special

Balance of Plant

Turbine / Generator

Eye on the Ball

- Human Performance
 - Right Work Right the First Time
 - Strengthening Relationships
 - Building Engineering Leaders
- Applying Processes
 - Graded Approaches Need to be Used Consistently
 - Standards Need to be Known and Practiced Consistently
- Technical Conscience Challenges
 - Industry Lessons on First of a Kind / First in a While
 - Fast Track Engineering / Schedule Pressure
 - Management / Escalation of Issues

Building Together

· BUILDINGTOGETHER ·

THE DARLINGTON REFURBISHMENT PROJECT

U2 Project Status

- Just past the halfway mark for schedule duration and about 60% complete for work execution
- disassembly complete start of reassembly
- Unit 2 remains on time and on budget

- Applying Lessons Learned
- Government approval to proceed with Unit 3
- Average of 14,200 jobs annually

Top Program Risks:

- Vendor Performance
- Skilled trades/craft
- Retention of Leadership
- Foreign Material Control

Unit 3 Planning

- On February 15, 2018, the Ontario government confirmed its commitment to begin the refurbishment of Unit 3 at Darlington Nuclear.
- Unit 3 planning is underway to be ready to commence Unit 3 execution once Unit 2 is complete
- An independent planning team is being established to ensure distractions around the execution of Unit 2 are minimized. Unit 3 scope is similar to Unit 2
 - Excludes one-time facility and safety projects, and in-station support service projects.
 - Includes Turbine Generator Controls and Stator Replacement and Rewind.
- Engineering has commenced
 - Preliminary Engineering is underway for balance of plant projects.
 - Detailed Engineering and long lead material procurement is advancing for Turbine Generator and Re-tube and Feeder Replacement projects.
- Life-to-date costs for Unit 3 are \$31 Million.

Ontario Nuclear Refurbishment Schedule

Nuclear Refurbishment Schedule

Additional Options

Building Together – OPG One Team

Key Lessons

Lack of involvement of dedicated Operations & Maintenance organization can result in commissioning and restart issues.	 Incorporation of an Operations and Maintenance organization in the DRP to reduce commissioning and restart challenges
Insufficient front end planning as a primary source of failure and importance of good project management processes and controls	 Adoption of industry recommended practices, processes and controls to administer the Program
Mis-categorization of estimate class by contractor can lead to underestimation of budget and effort	 Ensure that the classification reflects the level of engineering completed and estimates are fully vetted b OPG Complete detailed engineering prior to beginning construction, awarding contracts and estimating material quantities
Projects that require ty-in with existing facilities and large, first-of-kind projects are complex	 Ensure added resources and oversight and account for added complexity Ensure that the contractor hired to do the work has the right skills and experience

Return to Service Processes

- Construction Completion Declaration (CCD) is a declaration that construction work and supporting documentation is complete.
 - Prepared by the Executing Group.
 - Accepted by Engineering (design and system).
 - Accepted by RTS for O&M .
- CCD is not an Available for Service (AFS).
- AFS is done for:
 - Modifications per N-PROC-MP-0090 (MTL lead)
 - Systems per NK38-INS-09701-10005 (SRE Lead)
- AFS's will be scheduled as early as possible to maximize window available prior to requiring the systems to be in service and grouped logically to minimize effort.

RTS is Processes and Behaviours

Processes:

- Installation of new equipment
- Restart Control Hold Points
- Regulatory Hold Points
- Evolution Procedures
- Systems Available for Service (SAFS)

Behaviours:

- Safety / Hu
- Work readiness
- Quality workmanship
- FME behaviours
- Cost behaviours
- Teamwork

